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Abstract
We present detailed theoretical and numerical studies of surface states of a
coupled defect chain of finite length in a photonic crystal. By comparatively
studying three such structures with zero, one, and two defects on the photonic
crystal surface, respectively, we found that the transmission characteristics of
the structure depend on the termination of the defect chain in the host crystal.
The peak frequencies and the number of peaks are related to the boundary
conditions of the coupled defects. Our numerical simulations in conjunction
with analytical treatment using the coupled mode theory fully establish the
analogy between the surface states in photonic crystals and the Tamm states
in solids. We also point out how the results of the localized surface states in this
one-dimensional model system can be generalized to two- or three-dimensional
systems where surface states become surface waves.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The surface excitations (discrete states or continuous waves) supported by a periodical
dielectric structure or photonic crystal (PC), which are referred to as surface Bloch states
(SBSs), have attracted increasing attention due to their importance in many applications [1].
Existence of the SBSs was first demonstrated for one-dimensional PCs [2–4]. The SBSs were
also identified theoretically and experimentally in two-dimensional PCs [5–8]. It was shown
that the SBSs can either decay in the air and into the PC, or decay into the PC but extend in the
air [5]. In a two-dimensional photonic crystal, the SBSs have only been observed either in PCs
terminated by ‘half-rods’ (or hemicylindrical rods) [6], or by a surface mono-layer with smaller
radius of the rods [9]. However, the underlying physics of the SBSs is still under debate [10].
It is also unclear how and to what extent the SBSs can be controlled. For example, we may
ask why hemicylindrical termination of photonic crystal results in well defined surface states
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inside the bandgap, while a cut throughout the end cylinders with smaller or larger than the
half-cylinder would not lead to any surface state.

Since the SBSs are related to periodical structures, they could be considered analogous to
the surface states in solids. The localized states at the surface of solids can be either Tamm-
like [11] or Shockley-like [12] states. The Tamm states are caused by the strong perturbation at
the surface, leading to an asymmetric potential with respect to the surface, while the Shockley
states appear even without such an asymmetry, due to the so called anti-crossing of bands
formed by different orbitals [13]. It was suggested to consider the SBSs on multilayer structures
(one-dimensional PCs) as analogous to the surface Shockley states in solids [3]. However,
this analogy cannot explain the fact that the surface states can appear inside the bandgap only
when the separation between the layers is large enough. In contrast, the main condition for the
Shockley electronic surface states is that the interatomic distance becomes small enough that
the boundary curves of the allowed energy bands have crossed [12].

In a recent attempt [14] to understand the underlying physics of the SBSs, we followed
the approach suggested first by Tamm in solids [11] and reduced the surface state problem to
a one-dimensional one. We investigated the SBSs of defect chains in a PC. We showed that
the surface states of the chain composed of identical defects are closely related to the Tamm
surface states in solids rather than to the Shockley surface states. In this context, it is important
to note that nowadays the researchers from a number of groups [15] try to connect so-called
surface solitons, which appear on the surface or interface of periodical arrays of the nonlinear
waveguides, and the Tamm surface states in solids, solely using the analogy in the termination
of the periodical dielectric and atomic potentials. However, the nature of the surface states
is determined by the surface potential, more specifically by its asymmetry with respect to the
coupling constant (or width of the relevant allowed band) [13]. Hence a proof of the Tamm-
like character of the surface states (and therefore their essential properties) should be based on
analysis of the surface potential. Such an analysis will be a subject of the present paper.

In addition to serving as a one-dimensional model system for surface states to eventually
understand those in two- and three-dimensional PCs, the understanding of light localization at
the ending defects of a one-dimensional chain is also of great importance in its own right as
an important type of waveguides, the coupled defect waveguides. Therefore, the goal of this
paper is also to analyse in full detail the localized surface states of a defect chain to understand
the transmission and reflection of such waveguides. Our model system is a two-dimensional
PC doped with a chain of equidistant and identical defects (figure 1). In terms of the tight-
binding model, such a structure can be described by the Bloch wavefunctions built on the
localized eigenstates of the defects [16]. We choose defects that support a non-degenerate s-
like mode inside the bandgap of the perfect crystal. The spectrum of the defect chain does
not depend on the momentum parallel to the crystal surface (y-axis in figure 1). Because of
this, the surface states of the chain, being localized on the ending defects, cannot propagate
along the crystal surface. We focus on how the termination of the defect chain inside the host
PC affects the eigenspectrum of the structure. In order to analyse this structure we use the
finite difference time domain technique (FDTD) and empirical tight-binding model. Through
the detailed analytical and numerical analyses we demonstrate the Tamm-like properties of the
surface states in such structures. We will also discuss the possible extension of our approach to
the case of the propagating surface states (waves) in a two-dimensional PC.

The paper is organized as follows. In section 2 we describe the model systems to be studied
and present the tight-binding analysis of the surface states in PCs. In section 3, we present the
FDTD simulations and explain the numerical results in terms of the tight-binding model. In
section 4 we discuss the possible extensions of our approach. Section 5 concludes the paper
with a summary of the main results.

2



J. Phys.: Condens. Matter 19 (2007) 056004 N Malkova and C Z Ning

Figure 1. (a)–(c) Structures 1, 2, and 3, respectively. The source (S), two ports (P1, P2), perfect
matched layers (the grey boxes), and frame of the reference system are shown.

2. Surface states of a defect chain

The structures to be discussed are shown in figure 1. The two-dimensional PC is a periodical
array of infinitely long dielectric rods (grey dots) embedded in another dielectric medium. This
otherwise perfect PC is doped with a chain of identical and equidistant defect rods (black dots).
We can design this structure in such a way that the defect chain would generate the split defect
states (or the allowed band of the chain) inside the bandgap of the host crystal. Then, as a
first-order approximation, we neglect the coupling between the defect rods and the perfect PC.
Therefore, we can consider this structure as a periodical array (chain in our case) embedded in
another quasi-homogeneous medium (perfect PC). Depending on the termination of the defect
chain, we distinguish structures 1, 2, and 3, as shown in figures 1(a), (b), and (c).

We first consider the infinite chain of the identical defects separated by distance d in the
framework of the tight-binding model [17]. The wavefunction of the chain is represented as
a linear combination of the eigenmodes, φ(r − nd), of the individual defects at the nth site,
�(r, t) = ∑

n an(t)φ(r − nd). In the nearest-neighbour approximation (see figure 1(a)), the
dynamics of the field amplitude an(t) at the nth defect can be characterized by the following
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set of ordinary differential equations [17]:

i
d

dt
an = αan + β(an−1 + an+1), (1)

where α = ω0−iγ0 is the complex eigenvalue of the individual defect defined by the frequency,
ω0, and width, γ0, of the resonant peak. If an individual defect is characterized by a single
mode, the coupling between the nearest defect modes φn = φ(r − nd) and φn−1 is represented
by the matrix element

β = ω0

∫
d�r δεφnφn−1∫

d�r ε|φn|2 . (2)

Here ε is the spatial distribution of the dielectric constant in the single-defect PC, and δε is
the dielectric constant change between the host crystal and defect rod. For an infinite chain of
defects, the solution of the problem takes the form

an(t) = An exp(−iωt) = a− exp[ikdn − iωt] + a+ exp[−ikdn − iωt]. (3)

Here k is the momentum defined by the dispersion relation

ω = α − 2β cos(kd). (4)

In the case of a finite chain with N defects, all defects in the chain are identical except the
two defects on the ends, which are described by the following two equations:

i
d

dt
a1 = α′a1 + β ′a2 + τain,

i
d

dt
aN = α′′aN + β ′′aN−1,

(5)

where α′, α′′, and β ′, β ′′ are the eigenvalues and coupling constants of the end defects,
respectively. In the equation for the first defect the extra term, τain represents the portion τ

of the input excitation, ain, which reaches the first defect from the source (see figure 1(a)). The
transmitted field from the chain can be defined as a portion cτ of the field amplitude at the last
defect. Then, by assuming β ′′ = β ′ = β , we get the relative transmission of the N-defect chain
as

T = cτ τβ sin kd

(α′′ − ω)(α′ − ω) sin[(N − 1)kd] + β(α′′ + α′ − 2ω) sin(Nkd) + β2 sin[(N + 1)kd] .
(6)

Finally, using the ansatz of (3) and assuming ain = 0, we reduce the set of equations (1), (5) to
the N × N eigenvalue problem which defines the spectrum ω and amplitude An of the defect
chain:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

α′ − ω β ′ 0 · · · 0 0
β ′ α − ω β · · · 0 0
0 β α − ω β · · · 0
...

...
...

...
...

...

0 0 · · · β α − ω β ′′
0 0 · · · 0 β ′′ α′′ − ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A1

A2

A3

· · ·
AN−1

AN

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= 0. (7)

We next would like to understand how the properties of the N-defect chain will change
with increasing values of |α′−α| and |α′′−α|. First of all, we note that in terms of mathematics
the eigenvalue problem (7) is equivalent to the tight-binding problem for the electron states in
a one-dimensional periodical potential with N atoms [13]. The termination of the periodical
potential by the surface is introduced via the assumption that the Coulomb integral is different
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Figure 2. Energy spectrum of a five-defect chain. The energy levels versus parameter � =
|α − α′|/β without (a) and with (c) the decay process. The dashed line shows the bottom of the
allowed band. (b) The absolute value of the wavefunctions neglecting the decay for each eigenvalue
in ascending order from the bottom to the top of the figure at � = 0 (stars) and 3 (dots).

for surface atoms (α′, α′′ �= α). The solution of this problem is well known to result in the
surface Tamm states for electrons [11].

However, even mathematically the analogy between photons and electrons in the finite
periodical potential is not complete. The important difference is that, as a reasonable
approximation, the lifetime of the surface electron can usually be taken to be infinity. In other
words, the decay of the surface electron excitation can be neglected. However, in the case of
photon states, the decay of the surface excitations cannot be neglected even in the first order
approximation and must be directly taken into account.

Let us first neglect any decay processes, by setting γ0, γ
′
0, γ

′′
0 = 0. We also assume that

the boundary conditions at both ends are identical and set α′ = α′′ as well as β ′ = β ′′ = β .
We analyse the change of the energy levels in dimensionless units (ω − ω0)/β (ω0 is the
eigenfrequency of the single defect) versus the parameter � = |α − α′|/β which describes the
asymmetry of the surface potential. The energy levels are shown in figure 2(a). Figure 2(b)
presents the absolute value of the wavefunctions, |�i |, at � = 0 (stars) and 3 (dots). Here the
panels from the bottom to the top of the figure show the eigenfunctions for each eigenvalue,
ωi (i = 1:5), in ascending order. We can see that, for large enough � > 1, two states move
out of the allowed band, determined by |(ω − ω0)/β| < 2 from equation (4). These states are
characterized by the complex wavevector k and localized at the surface as shown in figure 2(b)
(dashed lines in the two lowest panels). If the value of � increases further the two surface states
almost completely overlap in frequency. It is clear that the number of the surface states depends
on the number of defects seating on the surface. If we assume that α′ �= α and α′′ = α, that is,
the eigenvalue of one surface defect remains unchanged, then only one state will move into the
bandgap generating the surface mode.

Next we take into account the decay of the defect states by assuming that γ0, γ
′
0, γ

′′
0 �= 0.

The parameter � is complex now, � = �r + i�im. To show the effect of decay clearly we
keep the real value of � equal to 2 and vary its imaginary part only. The matrix in equation (7)
becomes non-Hermitian. Therefore all the eigenvalues of the structure are characterized both
by the real part (the frequency ωi ), and by the imaginary part (the width of the level �ωi ).
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The relative shifts of the energy levels versus �im are shown in figure 2(c). In this case,
the wavefunctions |�i | are similar to that for γ = 0 and � = 3 shown by dashed lines in
figure 2(b). We can see that with increase in the decay of the surface photon the two surface
states move towards the band edge. The width of the surface states (not shown) increases with
�im almost linearly.

We can conclude that in the one-dimensional model, similar to the Tamm surface states
for electrons, the SBSs for photons are the direct consequence of the asymmetric termination
of the periodic potential at the surface, α′, α′′ �= α. They will appear as soon as the eigenvalue
difference between the surface defect and the other interior defects is larger than the coupling
constant, i.e. |α′ − α| > β . Since the coupling constant β determines the width of the
allowed band directly, the Tamm states are more likely to occur for structures with narrow
allowed band or with large distance between the atoms. The situation is quite different for the
Shockley surface states which appear when atoms in the crystal are close to each other and
interact strongly. The underlying assumption of the Shockley model is that the wavefunction of
electrons should be approximated by a linear combination (hybrid orbital) of modes involving
more than one wavefunction of each atom [12]. It is therefore no longer sufficient to treat each
energy band as originating from a single atomic level as in the case of the Tamm states. For
most semiconductors, the assumption of the hybrid orbitals is very reasonable. For example,
in Si and Ge the s and p orbitals give rise to the valence and conduction bands. In the one-
dimensional case of a chain composed of identical defects, the band spectrum is built on
identical defect modes; therefore, no hybrid orbitals can exist. As we show below it is easy
to extend our theoretical approach to a two-dimensional PC composed of identical rods. In
this case, the existence of hybrid orbitals implies multi-mode resonators with coupling between
different modes on the nearest neighbours as strong as the shift in frequency between the modes.
Without special engineering of the unit cell this situation is very unlikely in PCs. Because of
this, the link between the underlying physics of the SBSs of PCs and the Shockley surface states
of electronic crystals mentioned in a number of papers [3, 4, 10] is not justified. We showed
theoretically above that the properties of the SBSs in the one-dimensional case are very closely
related to the Tamm surface states. We will verify the results of our theoretical analysis through
the numerical ‘experiment’, the FDTD simulation.

3. Numerical results

We investigate how the spectrum of the five-defect chain is affected by its termination. In order
to study the dependence of the defect states on the width of the allowed band, we vary the
defect separation from 2a to 3a to 4a. Figure 1 shows three structures investigated for the
defects separated by 2a.

As a model we consider a two-dimensional PC of a square lattice made of infinitely long
silicon rods (εr = 11.9) with radius R = 0.35a embedded in vacuum (ε0 = 1), where a is
the lattice constant. The plane-wave calculations show that this crystal prohibits propagation of
the TM mode (the magnetic field is in plane and the electric field is parallel to the rods) in the
frequency range ω̃ = ωa/2πc = 0.214:0.264. Decreasing the radius of a single rod to 0.2a
creates a resonant cavity. Using the super-cell plane wave technique we found that this cavity
supports a non-degenerate mode at frequency ω̃0 = ω0a/2πc = 0.23, almost exactly in the
middle of the bandgap.

In order to analyse this structure, we use the FDTD technique [18]. Our computational
domain is shown in figure 1. Each unit cell was divided into 20 × 20 discretization grid cells.
The computational domain was surrounded by perfect matched layers (grey rectangular boxes),
with the thickness corresponding to 10 layers of the discretization grid. The time step was
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Figure 3. Transmission of the five-defect chain with the defects separated by 2a. The response
functions calculated from the FDTD simulations at ports 1 (thick solid line) and 2 (dashed line)
for structures 1–3 are shown in (a), (b), and (c), respectively. The transmission coefficient of the
structure found from equation (6) (thin lines) and the related spectrum calculated from equation (7)
(dash–dotted vertical lines); the |Ez | of structures 1 (d) and 2 (e) at the resonant frequencies
indicated by arrows in (a) and (b), respectively.

�t = 1/(2�xc). The numerical simulations were performed with the total number of time
steps of 100 000. A Gaussian beam was launched at the input of the structure (S in figure 1).
The spatial width of the beam was equal to 20 grid cells. A frequency spectrum of the source
covered the region of interest �ω̃ = 0–0.4. In our numerical simulations we collect a signal at
ports 1 and 2.

Figure 3 presents the results of the FDTD simulations for the five-defect chain with the
defect distance of 2a. The response function calculated at ports 1 (solid line) and 2 (dashed
line) for structures 1–3 is shown in figures 3(a)–(c), respectively. In order to see the relative
shift of the surface states with respect to the band-edge clearly, we plot the transmission as a
function of dimensionless frequency, (ω−ω0)/β . In numerical analysis, the frequency ω0 is the
frequency of defect located in the centre of the calculation domain. For reference, the coupling
constants of the chains with defects separated by 2a, 3a, and 4a are equal to 0.0055, 0.0021,
and 0.0012, respectively. (Note that these values are in perfect agreement with the scaling
law [19] of the tight-binding model, β ∼ 1/d2.) The distributions of the |Ez| of structures 1
and 2 at the resonant frequencies pointed out by arrows in figures 3(a) and (b) are demonstrated
in figures 3(d) and (e), respectively.

As shown above, the number of the eigenstates should be equal to the number of the
defects for any chain. However, for certain boundary conditions one or two states can fall into
the forbidden band, becoming the surface state. We can see that for structure 3 with no defects
sitting on the crystal surface all five states are clearly visible in the spectrum of the both ports
(figure 3(c)). For structures 1 and 2, we can identify four states at port 1 (solid line), while all
five states are revealed at port 2 (dashed line). In structures 1 and 2 both end-defects (or one

7
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Figure 4. Dependence of the defect level shift (a) and width of the resonant peak (b) normalized
to the coupling constant as a function of the defect position with respect to the centre of the
crystal. Solid, dashed, and dash–dotted lines correspond to defect separations of 2a, 3a, and 4a,
respectively.

of them) are located on the crystal boundaries. Presumably the eigenvalues of these boundary
defects should differ from those of the other defects. If the shift of the eigenvalue of the surface
defect is as much as the value of β , two or one eigenstates should move away from the allowed
band. We can see from figure 3(a) that structure 1 gives an example of � � 1, where one of
the surface levels has moved out of the allowed band and another state is just about to do this
(see figure 2(a)). The field distributions for the lowest frequency states confirm that they are
associated with the defects localized at the surface (figures 3(e), (d)).

In order to perform a theoretical modelling of this structure, we have to know how the
eigenvalues of the defect (α′ and α′′) change when it moves along the chain. Using the FDTD
simulations we determined the frequency ω0(m), and the width, γ0(m), of the defect level
located at different sites m of the host crystal. In order to see the eigenvalue change with
respect to the width of the allowed band we normalize it to the value of β . The dependence
of the defect level shift, (ω0(m) − ω0)/β , and the width of the resonant peak, γ0(m)/β , as a
function of the defect position with respect to the centre of the crystal are shown in figures 4(a)
and (b), respectively. The data for the chains with defects separated by 2a, 3a, and 4a are
represented by solid, dashed, and dash–dotted lines, respectively. We can see that the frequency
of the defect is decreasing from the centre of the crystal to the surfaces. Simultaneously, the
width of the resonance peak is increasing. The smaller the coupling constant β , the larger the
relative shift of the level and its width.

Using the data presented in figure 4 we found the values of α′ and α′′. For structure 1
α′/β = −1.3 − i0.41 and α′′/β = −1.2 − i0.39 while for structure 2 α′/β = −1.4 − i0.46
and α′′/β = 0 − i0.03. In order to calculate the transmission coefficient from equation (6)
we also have to estimate another a priori unknown coefficient cτ τ determined by the reflection
on both sides of the structure. We found the factor cτ τ by matching the maximum of the
transmission obtained from the FDTD simulation with the theoretical data obtained from
equation (6). Then the theoretical transmission coefficient and related spectrum of the structure
were calculated from equation (6) and equation (7), respectively. The results for the theoretical
transmission coefficient of structures 1, 2, and 3 are shown by thin lines in figures 3(a), (b),
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Figure 5. (a) The transmission coefficient calculated from the FDTD simulations for structure 1
with defect separation 2a (solid line), 3a (dashed line), and 4a (dash–dotted line). The arrows point
to the surface modes. (b) The |Ez| of structure 1 with defects separated by 4a at the resonance
frequency indicated by the arrow.

and (c), respectively. The calculated band spectrum is shown by vertical dash–dotted lines.
We can see that the peaks in the theoretical transmission coefficient exactly coincide with the
band levels (dash–dotted lines). This validates the consistency of the developed theoretical
model. Moreover, the theoretical spectrum of the defect chain exactly predicts the appearance
of the surface states (see dash–dotted lines in figures 3(a) and (b)). A comparison between
the theoretical calculations and the FDTD simulations shows an overall good agreement. The
noticeable discrepancies between the theoretical data and the simulation results lie in error of
estimating the parameters α′ and α′′. We would also like to mention that no fitting has been
used here. We believe that these facts validate the applicability of the developed theoretical
model.

As was mentioned before, the Tamm states are more likely to occur in the case of the
narrow allowed band or for large distance between the atoms. Therefore we should expect
that the Tamm surface state will move farther away from the band edge for the narrower band,
or for the defect chains of large separation. The transmission coefficients calculated from the
FDTD simulations for structure 1 with defect separation 2a (solid line), 3a (dashed line), and
4a (dash–dotted line) are presented in figure 5(a): the arrows point to the surface modes. The
corresponding field pattern for structure 1 with defect separation 4a at the resonance frequency
indicated by the arrow is shown in figure 5(b). We can see that, with increasing distance
between the defects or with decreasing width of the allowed band (4β) the surface mode
moves deeper inside the bandgap, and becomes more strongly localized to the surface (compare
figures 3(d), (e) and figure 5(b)). However, the narrower the allowed band and therefore the
deeper the surface mode gets inside the bandgap, the broader the width of the resonance state
with respect to the allowed band is (figure 5(a)). Comparing the dash–dotted line with dashed
and solid lines in figure 5(a) we can conclude that the transmission is decreasing with increasing
distance between the defects in the chain. This is a direct consequence of the surface state
falling deep inside the bandgap.

As mentioned in the introduction, the dependence of the surface mode on the distance
between dielectric layers was first demonstrated for a multilayer structure (or a one-dimensional
PC) [3]. The authors attempted to connect the SBSs with the electronic Shockley states
although they were not able to explain the dependence of the surface level on the separation

9
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between the layers using the Shockley theory. From the results of our analysis we can conclude
that the SBSs of the defect chain are closely related to the Tamm surface states, rather than the
Shockley states in solids.

4. Discussion

In the previous sections we demonstrated the Tamm surface states in a simple one-dimensional
defect chain in a host PC. In such a structure the SBSs are localized on the ending defects,
just as in the case of the original Tamm or Shockley model, with no propagation perpendicular
to the chain. A question arises: are the properties of the surface states of such a defect chain
studied similar to those of the propagating surface waves on a two-dimensional PC surface?
Or are the results of such a model study relevant to surface Bloch waves in a real 2D or 3D
PC? Again, here the analogy with the regular solid state is valid. In solids, it was realized after
Tamm’s and Shockley’s original work for a one-dimensional model that their surfaces states
localized at ends of a one-dimensional chain become surface waves in real three-dimensional
solids. Many interesting properties and their applications, and indeed the whole field of surface
science, emerged from their original works [13]. The relationship between localized surface
states in one dimension and surface waves in two and three dimensions follows the same logic.

Our approach and the results of section 2 can be straightforwardly extended to a two-
dimensional square lattice composed of identical rods. Using the transfer matrix approach [21]
in terms of the empirical tight-binding model [22], we can associate each cylinder of the crystal
with a Mie resonance. As we discussed in section 2, one of the conditions for the Tamm surface
states is that the hybridization in the spectrum should be weak. In terms of the tight-binding
model it was shown that the coupling between different Mie resonances of a PC composed
of identical rods is very weak (at least for the lowest bands) [22]. Then the spectrum of the
PC slab with N layers associated, for example, with the n = 0 (s-like) Mie resonance will be
described by an equation similar to (7). But in this case, the diagonal matrix elements α must be
replaced by α0 + 2β0 cos(qa), where q is the momentum in the plane of the layer and a is the
lattice constant of the crystal. For each q , the width of the allowed band of an infinite crystal
remains equal to 4β0, with all eigenstates of the N-layer slab being shifted by 2β0 cos(qa)

with respect to the states of the defect chain studied. In the case of the finite crystal, we have
to assume that the eigenstates (or Mie resonances) of the surface cylinders differ from those
of the interior cylinders. Therefore, the diagonal matrix elements of the first and last rows of
matrix (7), α′

0 + 2β ′
0 cos(qa), must differ from those for the interior ones, or α0 �= α′

0, and
β0 �= β ′

0. Depending on the value of α0 − α′
0, the surface states may appear either inside the

bandgap or inside the allowed bands. From this analysis we can see that the essential physics of
the surface states of two-dimensional PCs will be similar to that of the defect chain studied in
section 2, but with one important consequence: the localized SBSs will become surface waves
propagating along the surface. A more detailed study of specific realization of surface waves
in higher dimensional PCs is beyond the scope of this paper.

In this paper we have discussed only the structures terminated by complete rods. Our
analysis showed the existence of the surface modes even for a PC terminated by ‘complete
rods’. However, as was mentioned in the introduction, other studies have shown that surface
states can only exist for PCs terminated by hemicylindrical rods [6] or for the surfaces with a
surface rod-layer of smaller radius [9]. Remarkably, this effect can be easily explained in terms
of the theory developed here. Indeed, the hemicylindrical termination or the surface mono-
layer should be considered rather as a defect or ad-atom layer on the surface of a crystal. We
expect that such a layer gives the strongest perturbation on the surface (because a defect with
half the radius of the host rods results in a state almost in the middle of the bandgap), while the
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perturbation by surface rods smaller or larger than the hemicylinders should not be as strong.
One of the results of the theory is that the stronger the perturbation on the surface is, the deeper
the surface state moves inside the bandgap. In the case of weak perturbation or ‘complete
rod’ termination, the surface state will almost overlap the allowed band, making surface states
invisible in the experiment. Cutting the surface rods (or decreasing the radius) will increase the
perturbation on the surface and move the surface state deeply inside the band gap.

As was mentioned, defect chains we studied here do not have dispersion parallel to the
surface of the crystal. Therefore, depending on the component of the light momentum parallel
to the surface, exactly the same mode could be either radiative or evanescent. Because of this
we were able to observe the surface modes even in the transmission spectrum. We showed that,
in general, the surface states on PCs are characterized by a strong decay. However, the decay
could be considerably decreased by exciting the evanescent surface mode only or by using a
special geometry of the surface [23].

5. Conclusion

We have studied theoretically and numerically the SBSs of a chain of identical defects
embedded in a host PC. Using the FDTD simulations we analysed the genesis of the surface
states. We used a comprehensive tight-binding approach to demonstrate that the surface states
are a consequence of the asymmetric termination of the periodic potential at the surface. They
appear as soon as the perturbation on the surface or the eigenvalue difference between the
surface defect and the interior defects is larger than coupling constant, |α′ − α| > β . Our
analysis confirmed that the SBSs of the defect chain are the Tamm-like surface states. The
smaller the width of the allowed band or the stronger the perturbation on the surface, the deeper
the surface state moves inside the bandgap, and becomes more strongly localized to the surface.
We showed that the surface states lying deep inside the bandgap affect directly the transmission
through the structure. Such surface states could efficiently trap the incident light, resulting in
a very low transmission. We believe that this effect should explain a well known fact of low
transmission through the narrow allowed band in PCs [20].

Finally, the comprehensive theoretical model developed here proves to be capable of
analysis and prediction of the properties of the SBSs on PCs giving insight into their general
properties. We believe that such a detailed understanding of the governing parameters of the
surface states will help to design PC surfaces with desired properties for many applications
including sub-wavelength optics.
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